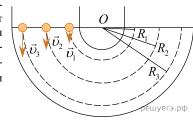
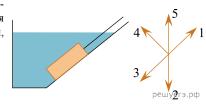

Централизованное тестирование по физике, 2014


При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

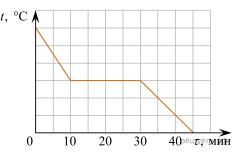
- 1. Среди перечисленных ниже физических величин скалярная величина указана в строке:
 - 1) перемещение
- 2) сила
- 3) импульс
- 4) скорость
- 5) работа
- **2.** На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:


3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $\upsilon_1=25$ м/с, $\upsilon_2=30$ м/с, $\upsilon_3=35$ м/с, а радиусы кривизны траекторий $R_1=40$ м, $R_2=45$ м, $R_3=50$ м. Промежутки времени Δt_1 , Δt_2 , Δt_3 , за которые мотогонщики проедут поворот, связаны соотношением:

1)
$$\Delta t_1 = \Delta t_2 = \Delta t_3$$
 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$

4. На поверхности Земли на тело действует силя тяготения, модуль которой $F_1 = 144$ Н. Если это тело находится на высоте $h = 3R_3$ (R_3 — радиус Земли) от поверхности Земли, то на него действует сила тяготения, модуль которой F_2 равен:

- 1) 9 H 2) 16 H 3) 24 H 4) 36 H 5) 48 H
- **5.** Из водоема с помощью троса поднимают каменную плиту (см.рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:

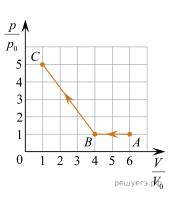


- 1) 1 2) 2 3) 3 4) 4
- **6.** Вблизи поверхности Земли атмосферное давление убывает на 133 Па при подъёме на каждые 12 м. Если у подножия горы, высота которой h=288 м, атмосферное давление $p_1=101,3$ кПа, то на её вершине давление p_2 равно:
 - 1) 95,3 кПа
- 2) 96,2 κΠa
- 3) 97,4 кПа
- 4) 98,1 κΠa

5) 5

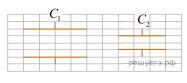
5) 99,2 κΠa

7. В момент времени $\tau_0=0$ мин кристаллическое вещество начали охлаждать при постоянном давлении, ежесекундно отнимая у вещества одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени τ . Половина массы вещества закристаллизовалась к моменту времени τ_1 , равному:

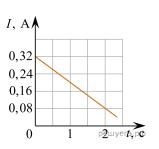


- 1) 5 мин
- 2) 10 мин
- 3) 20 мин
- 4) 30 мин

4) 43 °C

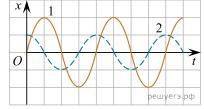

- 5) 35 мин
- **8.** При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от $V_1 = 80$ л до $V_2 = 64$ л. Если начальная температура газа $t_1 = 97$ °C, то конечная температура t_2 газа равна:
 - 1) 13 °C
- 2) 23 °C
- 3) 33 °C
- 5) 53 °C

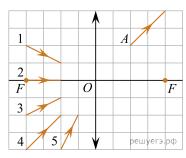
9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C(см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:


- 1) $U_A > U_C > U_B$ 2) $U_C > U_A > U_B$ 3) $U_A > U_B > U_C$ 4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$

- 10. Единицей работы в СИ, является:
 - 1) 1 Φ
- 2) 1 H
- 3) 1 Кл
- 4) 1 B
- 5) 1 Дж
- **11.** Два одинаковых маленьких проводящих шарика, заряды которых $q_1 = 26$ нКл и $q_2 = -14$ нКл находятся в воздухе ($\varepsilon = 1$). Шарики привели в соприкосновение, а затем развели на расстояние r = 30 см. Модуль силы F электростатического взаимодействия между шариками равен:
 - 1) 2.0 mkH
- 2) 3,6 mkH
- 3) 4.4 mkH
- 4) 5.0 mkH
- 5) 6.2 мкH
- 12. На рисунке изображены два плоских воздушных $(\varepsilon = 1)$ конденсатора C_1 и C_2 обкладки которых имеют форму дисков. (Для наглядности расстояние между обкладками показано преувеличенным.) Если ёмкость первого конденсатора $C_1 = 0.27 \text{ н}\Phi$, то ёмкость второго конденсатора C_2 равна:

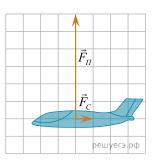
- 1) 0.076 нФ
- 2) 0.10 нФ
- 3) 0.24 нФ
- 4) 0.30 нФ
- 5) 0.41 HΦ
- 13. Лампа и резистор соединены последовательно и подключены к источнику постоянного тока. Сопротивление резистора в 5 раз меньше, чем сопротивление лампы. Если напряжение на лампе $U_{\pi} = 10 \text{ B}$, то напряжение напряжение U на клеммах источника тока равно:
 - 1) 9,0 B
- 2) 12 B
- 3) 15 B
- 4) 18 B
- 5) 21 B


14. На рисунке изображён график зависимости силы тока *I* в катушке индуктивности от времени t. Если индуктивность катушки L = 0.10 Гн, то в ней возбуждается ЭДС самоиндукции ε , равная:

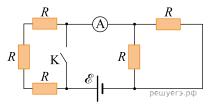

- 1) 16 мВ
 - 2) 12 mB
- 3) 8.0 MB
- 4) 6.0 MB
- 5) 4,0 mB

15. Два пружинных маятника (1 и 2) совершают гармонические колебания. Зависимости координаты х маятников от времени t изображены на рисунке. Отношение амплитуды колебаний A_2 второго маятника к ам-

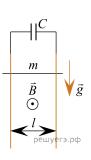
плитуде колебаний A_1 первого маятника $\left(\frac{A_2}{A_1}\right)$ равно:


- 1) $\frac{1}{2}$ 2) $\frac{2}{3}$ 3) 1 4) $\frac{3}{2}$ 5) 2
- **16.** На рисунке изображён луч света A, прошедший через тонкую собирающую линзу с главными фокусами F. Этот же луч, падающий на линзу обозначен цифрой:

- 1) 1 2) 2
- 3)3
- 5) 5
- 17. Если работа выхода электрона с поверхности цезия $A_{\rm BMX} = 2,4$ эВ, а максимальная кинетическая энергия фотоэлектрона $E_{\kappa}^{max} = 4 \cdot 10^{-19} \, \text{Дж}$, то энергия E фотона, падающего на поверхность металла, равна:
 - 1) 4,9 эВ
- 2) 5,6 ₃B
- 3) 6,0 эВ
- 4) 6.6 9B
- 5) 7,4 ₃B


- **18.** Неизвестным продуктом ${}_{7}^{A}X$ ядерной реакции ${}_{89}^{232}\text{Ac} \rightarrow {}_{90}^{232}\text{Th} + {}_{7}^{A}X$ является:

- 1) ${}_{0}^{1}n$ 2) ${}_{2}^{4}$ He 3) γ -фотон 4) ${}_{1}^{1}p$ 5) ${}_{-1}^{0}e$
- **19.** В момент начала отсчёта времени $t_0 = 0$ с два тела начали двигаться из одной точки вдоль оси Ox. Если зависимости проекций скоростей движения тел от времени имеют вид: $v_{1x}(t) = A + t$ Bt, где A = 28 м/c, B = -5.2 м/c² и $v_{2x}(t) = C + Dt$, где C = -5 м/c, D = -3.7 м/c², то тела встретятся через промежуток времени Δt , равный ... **c**.
- 20. Самолет летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены подъемная сила $\vec{F}_{\scriptscriptstyle \Pi}$ и сила сопротивления воздуха $\vec{F}_{\rm c}$, действующие на самолет. Если сила тяги $\vec{F}_{\rm T}$ двигателей самолета направлена горизонтально, а модуль этой силы $\vec{F}_{\rm T} = 70~{\rm KH}$, то масса *m* самолета равна ... т.



- **21.** На гидроэлектростанции с высоты h = 50 м ежесекундно падает m = 300 т воды. Если полезная мощность электростанции $P_{\text{полезн}} = 78 \text{ MBT}$, то коэффициент полезного действия η электростанции равен ... %.
- **22.** Два тела массами $m_1 = 4,00$ кг и $m_2 = 3,00$ кг, модули скоростей которых одинаковы ($v_1 =$ υ₂), двигались по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой u =15,0 м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **23.** В баллоне находится идеальный газ массой $m_1 = 1.9$ кг. После того как из баллона выпустили некоторую массу газа и понизили абсолютную температуру оставшегося газа так, что она стала на $\alpha = 20.0$ % меньше первоначальной, давление газа в баллоне уменьшилось на $\beta = 40.0$ %. Масса m газа выпущенного из баллона равна ... Γ .
- **24.** При прохождении через батарею отопления температура воды ($c = 4.2 \text{ кДж/(кг} \cdot ^{\circ}\text{C})$ уменьшается от $t_1 = 50$ °C до $t_2 = 40$ °C. Если батарея ежесекундно отдает комнатному воздуху количество теплоты O = 2.1 кЛж, то масса m воды, проходящей через батарею за промежуток времени $\tau = 20$ мин, равна ... кг.
- 25. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1 = 0.52$ кДж. Если при последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении, то изменение температуры ΔT газа в изобарном процессе равно ... **К**.

- **26.** Абсолютный показатель преломления стекла n = 1.72. Если частота световой волны v =510 ТГи, то длина λ этой волны в стекле равна ... **нм**.
- 27. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока I_2 R= 98 мА, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... **мA**.

- 28. Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B = 2.3 мТл. Если радиус окружности R = 6.4 мм, то кинетическая энергия W_{κ} электрона равна ... э**В**.
- 29. В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе $U_0 = 1.9 \, \mathrm{B}$, а амплитудное значение силы тока в контуре $I_0 = 60$ мА. Если электроёмкость конденсатора C = 0.25 мкФ, то частота v колебаний в контуре равна ... кГц.
- **30.** В однородном магнитном поле, модуль индукции которого B = 0.35Тл, находятся два длинных вертикальных проводника, расположенные в плоскости, перпендикулярной линиям индукции (см. рис.). Расстояние между проводниками l = 12,0 см. Проводники в верхней части подключены к конденсатору, ёмкость которого $C = 1 \, \Phi$. По проводникам начинает скользить без трения и без нарушения контакта горизонтальный проводящий стержень массой m = 2.1 г. Если электрическое сопротивление всех проводников пренебрежимо мало, то через промежуток времени $\Delta t = 0.092$ с после начала движения стержня заряд q конденсатора будет равен ... **мК**л.

